Perimetria da cintura e abdômen: pontos distintos para a estratificação do risco cardiometabólico
DOI:
https://doi.org/10.62827/nb.v23i2.3017Palavras-chave:
Síndrome metabólica; obesidade; exercício físico; estilo de vida; atenção primária à saúde.Resumo
Introdução: A circunferência da cintura é um parâmetro importante para a avaliação do risco cardiometabólico. Objetivo: Mensurar e confrontar duas referências anatômicas distintas com o intuito de checar se essas duas variáveis podem ser aplicadas com o mesmo objetivo na determinação do risco cardiometabólico. Métodos: 80 homens e 77 mulheres (18-55 anos), aparentemente saudáveis, foram selecionados. Foram mensurados os pontos antropométricos: circunferência da cintura (entre a última costela e a borda da crista ilíaca) e circunferência abdominal (em cima da cicatriz umbilical). Posteriormente, foram submetidos ao teste de normalidade (Kolmogorov-Smirnov test) e homogeneidade (Levene test). Em seguida, foi aplicado o teste t de Student não pareado e os resultados apresentados em média ± desvio-padrão. O nível de significância adotado foi (p < 0,05) e as análises foram realizadas com o software SigmaPlot for Windows versão 11.0, copyright © 2008 Systat Software, Inc. Além disso, foi calculada a diferença e delta percentuais dos respectivos grupos. Resultados: O grupo do sexo feminino apresentou diferença significativa entre os pontos antropométricos (p = 0,001), diferença percentual de 46,8% e delta percentual de 53,2%. Os homens não apresentaram diferença estatística, diferença percentual de 1,25% e delta percentual de 1,25%. Conclusão: Observou-se que, nas mulheres, as distintas medidas antropométricas possuem diferença não apenas no ponto anatômico, mas também em sua perimetria. Além do mais, grande parte da amostra avaliada do sexo feminino estaria classificada de maneira equivocada, caso fosse adotado como ponto de corte a CAB, ao invés da CC, conforme demonstrado nos cálculos das diferenças percentuais e também no delta percentual.
Referências
Anchuelo AC, Martínez-Larrad MT, Serrano-García I, Pérez CF, Serrano-Ríos M. Body fat anthropometric indexes: Which of those identify better high cardiovascular risk subjects? A comparative study in Spanish population. PLoS One. 2019;14(5). doi:10.1371/journal.pone.0216877.
Malachias MB, Souza WB, Plavnik FL, Rodrigues CS, Brandão AA, Neves MT, et al. 7ª diretriz Brasileiras de Hipertensão Arterial. Arq Bras Cardiol. 2016;107(3 Suppl 3):1-103.
Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. Diretrizes brasileiras de obesidade 2016/ABESO. 4ª ed. São Paulo: ABESO; 2016.
Chaves TO, Reis MS. Abdominal Circumference or Waist Circumference? Int J Cardiovasc Sci. 2019;32(3):290-2. doi:10.5935/2359-4802.20180080.
Zerga AA, Bezabih AM, Adhanu AK, Tadesse SE. Obesity Indices for Identifying Metabolic Syndrome Among Type Two Diabetes Patients Attending Their Follow-Up in Dessie Referral Hospital, North East Ethiopia. Diabetes Metab Syndr Obes. 2020;13:1297-304. doi:10.2147/DMSO.S242792.
Kotseva K, De Bacquer D, De Backer G, Rydén L, Jennings C, Gyberg V, et al. Lifestyle and risk factor management in people at high risk of cardiovascular disease. A report from the European Society of Cardiology European Action on Secondary and Primary Prevention by Intervention to Reduce Events (EUROASPIRE) IV cross-sectional survey in 14 European regions. Eur J Prev Cardiol. 2016;23(18):2007-18. doi:10.21037/cdt.2017.04.06.
Chang M, Lee HY, Seo SM, Koh YS, Park HJ, Kim PJ, et al. The impact of educational attainment on cardiorespiratory fitness and metabolic syndrome in Korean adults. Medicine (Baltimore). 2020;99(17). doi:10.1097/MD.0000000000019865.
Weiderpass E, Botteri E, Longenecker JC, Alkandari A, Al-Wotayan R, Duwairi QA, et al. The Prevalence of Overweight and Obesity in an Adult Kuwaiti Population in 2014. Front Endocrinol (Lausanne). 2019;10:449. doi:10.3389/fendo.2019.00449.
Molina-Luque R, Romero-Saldaña M, Álvarez-Fernández C, Rodríguez-Guerrero E, Hernández-Reyes A, Molina-Recio G. Waist to Height Ratio and Metabolic Syndrome as lung dysfunction predictors. Sci Rep. 2020;10(1):7212. doi:10.1038/s41598-020-64130-0.
Petroski EL. Antropometria: técnicas e padronizações. Santa Maria: Pallotti; 2003.
Rossi L. Nutrição em Academias do Fitness ao Wellness. São Paulo: Roca; 2013.
Mbanya VN, Kengne AP, Mbanya JC, Akhtar H. Body mass index, waist circumference, waist-hip-ratio and waist-height-ratio: which is the better discriminator of prevalent screen-detected diabetes in Cameroonian population? Diabetes Res Clin Pract. 2015;108(1):22-30. doi:10.1016/j.diabres.2015.01.032.
Li R, Shi L, Jia J, Li Y, Yang Q, Ruan Y, et al. Differentiating the associations of waist circumference and body mass index with cardiovascular disease risk in a Chinese population. Asia Pac J Public Health. 2015;27(2):457-67. doi:10.1177/1010539512465306.
Stewart A, Marfell-Jones M, Olds T, Ridder H. International standards for anthropometric assessment. Lower Hutt, New Zealand: International Society for the Advancement of Kinanthropometry (ISAK); 2011.
Elitok GK, Duru NS, Elevli M, Sağlam ZA, Karşıdağ K. Prevalence of Metabolic Syndrome in Middle School Children and Evaluation of Components of Metabolic Syndrome. Sisli Etfal Hastan Tip Bul. 2019;53(4):403-8. doi:10.14744/SEMB.2018.50479.
Özcan RK, Özmen SG. The Association Between Migraine, Metabolic Syndrome, Insulin Resistance, and Obesity in Women: A Case-Control Study. Sisli Etfal Hastan Tip Bul. 2019. doi:10.14744/SEMB.2018.09582.
Ji C, Xia Y, Tong S, Wu Q, Zhao Y. Association of handgrip strength with the prevalence of metabolic syndrome in US adults: the national health and nutrition examination survey. Aging (Albany NY). 2020;12. doi:10.18632/aging.103097.
Tremblay A, Bélanger MP, Dhaliwal R, Brauer P, Royall D, Mutch DM, et al. Impact of a multidisciplinary intervention on physical fitness, physical activity habits and the association between aerobic fitness and components of metabolic syndrome in adults diagnosed with metabolic syndrome. Arch Public Health. 2020;78:22. doi:10.1186/s13690-020-0399-0.
Zheng Q, Lin W, Liu C, Zhou Y, Chen T, Zhang L, et al. Prevalence and epidemiological determinants of metabolically obese but normal-weight in Chinese population. BMC Public Health. 2020;20(1):487. doi:10.1186/s12889-020-08630-8.
Ng NY, Jiang G, Cheung LP, Zhang Y, Tam CH, Luk AO, et al. Progression of glucose intolerance and cardiometabolic risk factors over a decade in Chinese women with polycystic ovary syndrome: A case-control study. PLoS Med. 2019;16(10). doi:10.1371/journal.pmed.1002953.
Suliga E, Ciesla E, Głuszek-Osuch M, Rogula T, Głuszek S, Kozieł D. The Usefulness of Anthropometric Indices to Identify the Risk of Metabolic Syndrome. Nutrients. 2019;11(11):2598. doi:10.3390/nu11112598.
Malik MS, Qayyum W, Farooq A, Waqas A, Sukhera AB, Khalid MA, et al. Dietary Patterns, Exercise, and the Metabolic Syndrome Among Young People in Urban Pakistan (Lahore). Metab Syndr Relat Disord. 2019;18(1):56-64. doi:10.1089/met.2019.0021.
Buchmann N, Spira D, König M, Demuth I, Steinhagen-Thiessen E. Frailty and the Metabolic Syndrome - Results of the Berlin Aging Study II (BASE-II). J Frailty Aging. 2019;8(4):169-75. doi:10.14283/jfa.2019.15.
Katsa ME, Ioannidis A, Sachlas A, Dimopoulos I, Chatzipanagiotou S, Gil AP. The roles of triglyceride/high-density lipoprotein cholesterol ratio and uric acid as predisposing factors for metabolic syndrome in healthy children. Ann Pediatr Endocrinol Metab. 2019;24(3):172-9. doi:10.6065/apem.2019.24.3.172.
Correa-Burrows P, Blanco E, Gahagan S, Burrows R. Cardiometabolic health in adolescence and its association with educational outcomes. J Epidemiol Community Health. 2019;73(12):1071-7. doi:10.1136/jech-2019-212256.
Nasreddine L, Bachir N, Kharroubi S, Chamieh MC, Sibai AM, Hwalla N, et al. Anthropometric Cutoffs for Increased Cardiometabolic Risk Among Lebanese Adults: A Cross-Sectional Study. Metab Syndr Relat Disord. 2019;17(10):486-93. doi:10.1089/met.2019.0033.
Wang J, Thornton JC, Bari S, Williamson B, Gallagher D, Heymsfield SB, et al. Comparisons of waist circumferences measured at 4 sites. Am J Clin Nutr. 2003;77(2):379-84. doi:10.1093/ajcn/77.2.379.
Saklayen MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018;20(2):12. doi:10.1007/s11906-018-0812-z.
Yamagishi K, Iso H. The criteria for metabolic syndrome and the national health screening and education system in Japan. Epidemiol Health. 2017;39. doi:10.4178/epih.e2017003.
Perona SJ, Rio-Valle JS, Ramírez-Vélez R, Correa-Rodríguez M, Fernández-Aparicio A, González-Jiménez E. Waist Circumference and Abdominal Volume Index Are the Strongest Anthropometric Discriminators of Metabolic Syndrome in Spanish Adolescents. Eur J Clin Invest. 2019;49(3). doi:10.1111/eci.13060.
Sareban Hassanabadi M, Mirhosseini SJ, Mirzaei M, Namayandeh SM, Beiki O, Gannar F, et al. The Most Important Predictors of Metabolic Syndrome Persistence after 10-year Follow-Up: YHHP Study. Int J Prev Med. 2020;11:33. doi:10.4103/ijpvm.IJPVM_215_18.
Pimentel GD, Portero-McLellan KC, Maestá N, Corrente JE. Accuracy of sagittal abdominal diameter as predictor of abdominal fat among Brazilian adults: a comparation with waist circumference. Nutr Hosp. 2010;25:656-61. doi:10.3305/nh.2010.25.4.4507.
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Tiago Chaves, Clóvis de Albuquerque Maurício, Michel Silva Reis (Autor)
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution 4.0 que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.