Avaliação radiográfica dos efeitos da dieta hiperlipídica no osso mandibular em animais
DOI:
https://doi.org/10.62827/nb.v23i4.3034Palavras-chave:
Osso; Dieta hiperlipídica; Mandíbula.Resumo
Introdução: Considerando a fisiopatologia da periodontite apical (PA), uma doença inflamatória caracterizada pela reabsorção óssea, é provável que as alterações ósseas promovidas pela dieta hiperlipídica (DH) também sejam capazes de influenciar o mecanismo de desenvolvimento das lesões de PA. Objetivo: Avaliar através de radiografia periapical os principais efeitos da dieta hiperlipídica no osso mandibular em modelos animais. Métodos: Foram utilizados ratos Wistar (n=16), isogênicos, com 8 semanas de idade. Metade dos animais foi submetida à DH e a outra metade à dieta normal (C). Após 8 semanas, foi estimulado o desenvolvimento de lesão perirradicular (LP) nos primeiros molares inferiores esquerdos através da exposição pulpar. Após 40 dias, os animais foram eutanasiados. O sangue foi coletado para a realização da análise bioquímica (colesterol total, HDL, VLDL e triglicerídeos séricos) e mandíbula para análise radiográfica (espaço do ligamento periodontal, diâmetro do côndilo e espessura mandibular). Resultados: A DH promoveu aumento significativo nas concentrações séricas de triglicerídeos (p<0.05) e VLDL (p<0.05) no grupo DH. Os animais do grupo DH apresentaram redução tanto no diâmetro do côndilo (p<0.05) como na espessura mandibular (p<0.05), e aumento no espaço do ligamento periodontal (p<0.05) quando comparados ao grupo C. Conclusão: A DH provocou alterações significativas no osso mandibular, influenciando inclusive na resposta perirradicular à infecção endodôntica.
Referências
Barrios V, Escobar C, Cicero AF, Burke D, Fasching P, Banach M, Bruckert E. A nutraceutial approach (Armolipid Plus) to reduce total and LDL cholesterol in individuals with mild to moderate dyslipidemia: review of the clinical evidence. Atheroscler Suppl. 2017; 24: 1-15. https://doi.org/10.1016/j.atherosclerosissup.2016.10.003
Hagh LG, Zakavi F, Hajizadeh F, Saleki M. The association between hyperlipidemia and periodontal Infection. Iran Red Crescent Med J. 2014; 16: 65-77. https://doi.org/10.5812/ircmj.6577
Stewart J, McCallin T, Martinez J, Chacko S, Yusuf S. Hyperlipidemia. Pediatr Rev. 2020 Aug;41(8):393-402. https://doi.org/10.1542/pir.2019-0053
Tiburcio-Machado CS, Lang PM, Campos MM, Wolle CFB, Barcelos RCS, Zago NB, Leite CE, Etges A, Bier CAS. High-fat diet effect on periapical lesions and hepatic enzymatic antioxidant in rats. Life Sci 2020; 23:118637. https://doi.org/10.1016/j.lfs.2020.118637
Yao YS, Li TD, Zeng ZH. Mechanisms underlying direct actions of hyperlipidemia on myocardium: an updated review. Lipids Health Dis. 2020 Feb 8;19(1):23. https://doi.org/10.1186/s12944-019-1171-8
Paniagua JA. Nutricion, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J Diabetes. 2016; 7: 483-514. https://doi.org/10.4239/wjd.v7.i19.483
Drummer CIV, Saaoud F, Sun Y, Atar D, Xu K, Lu Y, Shao Y, Johnson C, Liu L, Shen H, Jhala NC, Jiang X, Wang H, Yang X. Hyperlipidemia May Synergize with Hypomethylation in Establishing Trained Immunity and Promoting Inflammation in NASH and NAFLD. J Immunol Res. 2021 Nov 23; 2021:3928323. https://doi.org/10.1155/2021/3928323
Antona ME, Ramos C, Stranges A, Monteiro AF, Chaves MMG, Mandalunis P, Zago V, Friedman SM, Macri EV. Fish oil diet effects on alveolar bone loss, in hypercholesterolemic rats. Arch Oral Biol. 2020; 109:104553. https://doi.org/10.1016/j.archoralbio.2019.104553
Clemente-Postigo MMI, Queipo-Ortuño M, Murri M, Boto-Ordoñez, Perez- Martinez P, Andres-Lacueva C, Cardona F, Tinahones J. Endotoxin increase after fat overload is related to post prandial hypertriglyceridemia in morbidly obese patients. J Lipid Res. 2012; 53: 973-978. https://doi.org/10.1194/jlr.P020909
Soares EA, Nakagaki WR, Garcia JAD, Camilli JA. Effect of hyperlipidemia on femoral biomechanics and morphology in low-density lipoprotein receptor gene knockout mice. J Bone Miner Metab. 2012; 30: 419-425. https://doi.org/10.1007/s00774-011-0345-x
Fujita Y, Maki K. High-fat diet-induced obesity triggers alveolar bone loss and spontaneous periodontal disease in growing mice. Obesity. 2016; 3: 4-9. https://doi.org/10.1186/s40608-016-0082-8
Muluke M, Gold T, Kiefhaber K, Al-Sahli A, Celenti R, Jiang H, Cremers S, Van Dyke T, Schulze-Spate U. Diet- induced obesity and its differential impact on periodontal bone loss. J Dent Res. 2016; 95: 223- 229. https://doi.org/10.1177/0022034515609882
Montalvany-Antonucci CC, Zicker MC, Ferreira AVM, Macari S, Ramos- Junior ES, Gomez RS, Pereira TSF, Madeira MFM, Fukada SY, Andrade I, Silva TA. High-fat diet disrupts bone remodeling by inducing local and systemic alterations, J. Nutr. Biochem. 2018; 59: 93-103. https://doi.org/10.1016/j.jnutbio.2018.06.006
Steeve KT, Marc P, Sandrine T, Dominique H, Yannick F. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth F R. 2004; 15: 49-60. https://doi.org/10.1016/j.cytogfr.2003.10.005
Nikolic N, Jakovljevic A, Carkic J, Beljic-Ivanovic K, Miletic M, Soldatovic I, Andric M, Ivanovic V, Milasin J. Notch signaling pathway in apical periodontitis: correlation with bone resorption regulators and proinflammatory cytokines. J Endod. 2018; 45:123-128. https://doi.org/10.1016/j.joen.2018.10.015
Reeves, PG. Components of the AIN-93 diets as Improvements in the AIN- 76 diet. J Nutr. 1997; 5: 838-841. https://doi.org/10.1093/jn/127.5.838S
Kwon Y, Park J, Lim H, Lee Y, Lee H, Shim J. Triglyceride to high density lipoprotein cholesterol ratio and its association with periodontal disease in Korean adults: findings based on the 2012-2014 Korean national health and nutrition examination survey. Clin Oral Investig. 2018; 22(1):515-522. https://doi.org/10.1007/s00784-017-2140-0
Zhou M, Zhu L, Cui X, Feng L, Zhao X, He S, Ping F, Li W, Li Y. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance but not of β cell function in a Chinese population with different glucose tolerance status. Lipids Health Dis. 2016; 15:1-9. https://doi.org/10.1186/s12944-016-0270-z
Conti LC, Segura-Egea JJ, Cardoso CBM, Benetti F, Azuma MM, Oliveira PHC, Bomfim SRM, Cintra LTA. Relationship between apical periodontitis and atherosclerosis: Lipid profile and histological study. Int Endod J. 2020; 53:1387-1397. https://doi.org/10.1111/iej.13350
Lee S, Im A, Burm E, Ha M. Association between periodontitis and blood lipid levels in a Korean population. J Periodontol. 2018; 89(1):28-35. https://doi.org/10.1902/jop.2017.170111
Suh JS, Kim SYJ, Lee SH, Kim RH, N Park N. Hyperlipidemia is necessary for the initiation and progression of atherosclerosis by severe periodontitis in mice. Mol Med Rep. 2022;26(2):273. https://doi.org/10.3892/mmr.2022.12789
Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovac Dis. 2009; 19: 291- 302. https://doi.org/10.1016/j.numecd.2008.12.015
Amar S, Zhou Q, Shaik-Dasthgirisaheb Y, Leeman S. Diet-induced obesity in mice causes changes in immune responses and bone loss manifested by bacterial challenge. PNAS. 2007; 104: 20.466-20.471. https://doi.org/10.1073/pnas.0710335105
Silva NLC, Motta NAV, Soares MA, Araujo OMO, Espíndola LCP, Colombo APV, Lopes RT, Brito FCF, Miranda ALP, Tributino JLM. Periodontal status, vascular reactivity, and platelet aggregation changes in rats submitted to hypercholesterolemic diet and periodontitis. J Periodontal Res. 2020; 55(3):453-463. https://doi.org/10.1111/jre.12730
Akamine A, Anan H, Hamachi T, Maeda K. A histochemical study of behavior of macrophages during experimental apical periodontitis in rats. J Endod. 1994; 20: 474-478. https://doi.org/10.1016/S0099-2399(06)80042-7
Tani-lshii N, Wang CY, Stashenko P. Immunolocalization of bone- resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure. Oral Microbiol Immunol. 1995; 10: 213-219. https://doi.org/10.1111/j.1399-302X.1995.tb00145.x
Kawashima N, Okiji T, Kosaka T, Suda H. Kinetics of macrophages and lymphoid cells during the development of experimentally induced periapical lesions in rat molars: a quantitative immunohistochemical study. J Endod. 1996; 22: 311-316. https://doi.org/10.1016/S0099-2399(96)80266-4
Lin S, Hong C, Chang H, Chiang C, Chen C, Jeng J, Kuo MY. Immunolocalization of macrophages and transforming growth factor β1 in induced rat periapical lesions. J Endod. 2000; 26: 335-340. https://doi.org/10.1097/00004770-200006000-00007
Minhoto GB, Khoury RD, Orozco EIF, Prado RF, Valera MC. Effect of chronic unpredictable stress on the progression of experimental apical periodontitis in rats. Int Endod J. 2021; 54:1342-1352. https://doi.org/10.1111/iej.13515
Pinto KP, Ferreira CMA, Guimarães AFC, Lima CO, Pires FR, Sassone LM, Silva EJNL. Effects of alcohol and nicotine consumption on the development of apical periodontitis in rats: a correlative micro-computed tomographic, histologic and immunohistochemical study. Int Endod J. 2020; 53:1238-1252. https://doi.org/10.1111/iej.13344
Eurasquim J, Muruzabal MA. A method for root canal treatment in the molar of rat. Oral Surg. 1967; 24: 540-546. https://doi.org/10.1016/0030-4220(67)90435-5
Abbott PV. Classification, diagnosis and clinical manifestations of apical periodontitis. Endod Topics. 2004; 8: 36-54. https://doi.org/10.1111/j.1601-1546.2004.00098.x
Kimak A, Strycharz-Dudziak M, Bachanek T, Kimak E. Lipids and lipoptroteins and inflammatory markers in patients with chronic apical periodontitis. Lipids Health Dis. 2015; 14:162-168. https://doi.org/10.1186/s12944-015-0156-5
Brasil SC, Santos RMM, Fernandes A, Lima RS, Costa CAS, Pinto KMMC, Pires FR, Santos MD, Siqueira Jr JF, Armada L. Influence of a high-fat diet in the progression of apical periodontitis. J Endod. 2021; 47: 600-605. https://doi.org/10.1016/j.joen.2020.12.015
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Karina Mara Martins da Costa Pinto, Vitor Mendes da Encarnação, Denise Gonçalves Pinho Dantas, Moisés João de Oliveira , Camila Stofela Sodré, Marco Orsini, Carlos Alberto Santos Costa, Rachel Moreira Morais dos Santos, Sabrina de Castro Brasil, Luciana Armada (Autor)
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution 4.0 que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.