Radiographic evaluation of the effects of a high-fat-diet on mandibular bone in animals

Authors

DOI:

https://doi.org/10.62827/nb.v23i4.3034

Keywords:

Bone; Diet high-fat; Mandible.

Abstract

Introduction: Considering the pathophysiology of apical periodontitis (AP), an inflammatory disease characterized by bone resorption, it is likely that bone changes promoted by high-fat- diet (HFD) are also able to influence the mechanism of AP lesions development. Objective: To evaluate by periapical radiography the main effects of a high-fat- diet on mandibular bone in animal models. Methods: Isogenic Wistar rats (n=16), 8 weeks old, were used. Half of the animals were submitted to HFD and the other half to control diet (CD). AP lesions were induced 8 weeks later by creating pulp exposure of the mandibular left first molars. After 40 days, the animals were euthanized. Blood was collected for biochemical analysis (total cholesterol, HDL, VLDL and serum triglycerides) and mandible for radiographic analysis (periodontal ligament space, condyle diameter and mandibular thickness). Results: The HFD promoted significant increase in serum triglyceride (p<0.05) and VLDL (p<0.05) concentrations in the HFD group. The HFD group animals showed a reduction in both condyle diameter (p<0.05) and mandibular thickness (p<0.05), and increased periodontal ligament space (p<0.05) when compared to the CD group. Conclusion: The HFD produced significant changes in the mandibular bone, modifying the periradicular response to endodontic infection.

Author Biographies

  • Karina Mara Martins da Costa Pinto, Estácio de Sá

    Estácio de Sá University, Rio de Janeiro, RJ, Brasil 

  • Vitor Mendes da Encarnação, UNINASSAU

    Uninassau University, Rio de Janeiro, RJ, Brasil

  • Denise Gonçalves Pinho Dantas, UNINASSAU

    Uninassau University, Rio de Janeiro, RJ, Brasil

  • Moisés João de Oliveira, UNINASSAU

    Uninassau University, Rio de Janeiro, RJ, Brasil

  • Camila Stofela Sodré, UNINASSAU

    Uninassau University, Rio de Janeiro, RJ, Brasil

  • Marco Orsini, UNIG

    Iguaçu University (UNIG), Nova Iguaçu, RJ, Brasil

  • Carlos Alberto Santos Costa, UFRJ

    Federal University of Rio de Janeiro (UFRJ), Macaé, RJ, Brasil

  • Rachel Moreira Morais dos Santos, UFF

    Fluminense Federal University (UFF), Niterói, RJ, Brasil

  • Sabrina de Castro Brasil, Unigranrio Afya

    Grande Rio University (Unigranrio Afya), Duque de Caxias, RJ, Brasil

  • Luciana Armada, Estácio de Sá

    Estácio de Sá University, Rio de Janeiro, RJ, Brasil 

References

Barrios V, Escobar C, Cicero AF, Burke D, Fasching P, Banach M, Bruckert E. A nutraceutial approach (Armolipid Plus) to reduce total and LDL cholesterol in individuals with mild to moderate dyslipidemia: review of the clinical evidence. Atheroscler Suppl. 2017; 24: 1-15. https://doi.org/10.1016/j.atherosclerosissup.2016.10.003

Hagh LG, Zakavi F, Hajizadeh F, Saleki M. The association between hyperlipidemia and periodontal Infection. Iran Red Crescent Med J. 2014; 16: 65-77. https://doi.org/10.5812/ircmj.6577

Stewart J, McCallin T, Martinez J, Chacko S, Yusuf S. Hyperlipidemia. Pediatr Rev. 2020 Aug;41(8):393-402. https://doi.org/10.1542/pir.2019-0053

Tiburcio-Machado CS, Lang PM, Campos MM, Wolle CFB, Barcelos RCS, Zago NB, Leite CE, Etges A, Bier CAS. High-fat diet effect on periapical lesions and hepatic enzymatic antioxidant in rats. Life Sci 2020; 23:118637. https://doi.org/10.1016/j.lfs.2020.118637

Yao YS, Li TD, Zeng ZH. Mechanisms underlying direct actions of hyperlipidemia on myocardium: an updated review. Lipids Health Dis. 2020 Feb 8;19(1):23. https://doi.org/10.1186/s12944-019-1171-8

Paniagua JA. Nutricion, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J Diabetes. 2016; 7: 483-514. https://doi.org/10.4239/wjd.v7.i19.483

Drummer CIV, Saaoud F, Sun Y, Atar D, Xu K, Lu Y, Shao Y, Johnson C, Liu L, Shen H, Jhala NC, Jiang X, Wang H, Yang X. Hyperlipidemia May Synergize with Hypomethylation in Establishing Trained Immunity and Promoting Inflammation in NASH and NAFLD. J Immunol Res. 2021 Nov 23; 2021:3928323. https://doi.org/10.1155/2021/3928323

Antona ME, Ramos C, Stranges A, Monteiro AF, Chaves MMG, Mandalunis P, Zago V, Friedman SM, Macri EV. Fish oil diet effects on alveolar bone loss, in hypercholesterolemic rats. Arch Oral Biol. 2020; 109:104553. https://doi.org/10.1016/j.archoralbio.2019.104553

Clemente-Postigo MMI, Queipo-Ortuño M, Murri M, Boto-Ordoñez, Perez- Martinez P, Andres-Lacueva C, Cardona F, Tinahones J. Endotoxin increase after fat overload is related to post prandial hypertriglyceridemia in morbidly obese patients. J Lipid Res. 2012; 53: 973-978. https://doi.org/10.1194/jlr.P020909

Soares EA, Nakagaki WR, Garcia JAD, Camilli JA. Effect of hyperlipidemia on femoral biomechanics and morphology in low-density lipoprotein receptor gene knockout mice. J Bone Miner Metab. 2012; 30: 419-425. https://doi.org/10.1007/s00774-011-0345-x

Fujita Y, Maki K. High-fat diet-induced obesity triggers alveolar bone loss and spontaneous periodontal disease in growing mice. Obesity. 2016; 3: 4-9. https://doi.org/10.1186/s40608-016-0082-8

Muluke M, Gold T, Kiefhaber K, Al-Sahli A, Celenti R, Jiang H, Cremers S, Van Dyke T, Schulze-Spate U. Diet- induced obesity and its differential impact on periodontal bone loss. J Dent Res. 2016; 95: 223- 229. https://doi.org/10.1177/0022034515609882

Montalvany-Antonucci CC, Zicker MC, Ferreira AVM, Macari S, Ramos- Junior ES, Gomez RS, Pereira TSF, Madeira MFM, Fukada SY, Andrade I, Silva TA. High-fat diet disrupts bone remodeling by inducing local and systemic alterations, J. Nutr. Biochem. 2018; 59: 93-103. https://doi.org/10.1016/j.jnutbio.2018.06.006

Steeve KT, Marc P, Sandrine T, Dominique H, Yannick F. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth F R. 2004; 15: 49-60. https://doi.org/10.1016/j.cytogfr.2003.10.005

Nikolic N, Jakovljevic A, Carkic J, Beljic-Ivanovic K, Miletic M, Soldatovic I, Andric M, Ivanovic V, Milasin J. Notch signaling pathway in apical periodontitis: correlation with bone resorption regulators and proinflammatory cytokines. J Endod. 2018; 45:123-128. https://doi.org/10.1016/j.joen.2018.10.015

Reeves, PG. Components of the AIN-93 diets as Improvements in the AIN- 76 diet. J Nutr. 1997; 5: 838-841. https://doi.org/10.1093/jn/127.5.838S

Kwon Y, Park J, Lim H, Lee Y, Lee H, Shim J. Triglyceride to high density lipoprotein cholesterol ratio and its association with periodontal disease in Korean adults: findings based on the 2012-2014 Korean national health and nutrition examination survey. Clin Oral Investig. 2018; 22(1):515-522. https://doi.org/10.1007/s00784-017-2140-0

Zhou M, Zhu L, Cui X, Feng L, Zhao X, He S, Ping F, Li W, Li Y. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance but not of β cell function in a Chinese population with different glucose tolerance status. Lipids Health Dis. 2016; 15:1-9. https://doi.org/10.1186/s12944-016-0270-z

Conti LC, Segura-Egea JJ, Cardoso CBM, Benetti F, Azuma MM, Oliveira PHC, Bomfim SRM, Cintra LTA. Relationship between apical periodontitis and atherosclerosis: Lipid profile and histological study. Int Endod J. 2020; 53:1387-1397. https://doi.org/10.1111/iej.13350

Lee S, Im A, Burm E, Ha M. Association between periodontitis and blood lipid levels in a Korean population. J Periodontol. 2018; 89(1):28-35. https://doi.org/10.1902/jop.2017.170111

Suh JS, Kim SYJ, Lee SH, Kim RH, N Park N. Hyperlipidemia is necessary for the initiation and progression of atherosclerosis by severe periodontitis in mice. Mol Med Rep. 2022;26(2):273. https://doi.org/10.3892/mmr.2022.12789

Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovac Dis. 2009; 19: 291- 302. https://doi.org/10.1016/j.numecd.2008.12.015

Amar S, Zhou Q, Shaik-Dasthgirisaheb Y, Leeman S. Diet-induced obesity in mice causes changes in immune responses and bone loss manifested by bacterial challenge. PNAS. 2007; 104: 20.466-20.471. https://doi.org/10.1073/pnas.0710335105

Silva NLC, Motta NAV, Soares MA, Araujo OMO, Espíndola LCP, Colombo APV, Lopes RT, Brito FCF, Miranda ALP, Tributino JLM. Periodontal status, vascular reactivity, and platelet aggregation changes in rats submitted to hypercholesterolemic diet and periodontitis. J Periodontal Res. 2020; 55(3):453-463. https://doi.org/10.1111/jre.12730

Akamine A, Anan H, Hamachi T, Maeda K. A histochemical study of behavior of macrophages during experimental apical periodontitis in rats. J Endod. 1994; 20: 474-478. https://doi.org/10.1016/S0099-2399(06)80042-7

Tani-lshii N, Wang CY, Stashenko P. Immunolocalization of bone- resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure. Oral Microbiol Immunol. 1995; 10: 213-219. https://doi.org/10.1111/j.1399-302X.1995.tb00145.x

Kawashima N, Okiji T, Kosaka T, Suda H. Kinetics of macrophages and lymphoid cells during the development of experimentally induced periapical lesions in rat molars: a quantitative immunohistochemical study. J Endod. 1996; 22: 311-316. https://doi.org/10.1016/S0099-2399(96)80266-4

Lin S, Hong C, Chang H, Chiang C, Chen C, Jeng J, Kuo MY. Immunolocalization of macrophages and transforming growth factor β1 in induced rat periapical lesions. J Endod. 2000; 26: 335-340. https://doi.org/10.1097/00004770-200006000-00007

Minhoto GB, Khoury RD, Orozco EIF, Prado RF, Valera MC. Effect of chronic unpredictable stress on the progression of experimental apical periodontitis in rats. Int Endod J. 2021; 54:1342-1352. https://doi.org/10.1111/iej.13515

Pinto KP, Ferreira CMA, Guimarães AFC, Lima CO, Pires FR, Sassone LM, Silva EJNL. Effects of alcohol and nicotine consumption on the development of apical periodontitis in rats: a correlative micro-computed tomographic, histologic and immunohistochemical study. Int Endod J. 2020; 53:1238-1252. https://doi.org/10.1111/iej.13344

Eurasquim J, Muruzabal MA. A method for root canal treatment in the molar of rat. Oral Surg. 1967; 24: 540-546. https://doi.org/10.1016/0030-4220(67)90435-5

Abbott PV. Classification, diagnosis and clinical manifestations of apical periodontitis. Endod Topics. 2004; 8: 36-54. https://doi.org/10.1111/j.1601-1546.2004.00098.x

Kimak A, Strycharz-Dudziak M, Bachanek T, Kimak E. Lipids and lipoptroteins and inflammatory markers in patients with chronic apical periodontitis. Lipids Health Dis. 2015; 14:162-168. https://doi.org/10.1186/s12944-015-0156-5

Brasil SC, Santos RMM, Fernandes A, Lima RS, Costa CAS, Pinto KMMC, Pires FR, Santos MD, Siqueira Jr JF, Armada L. Influence of a high-fat diet in the progression of apical periodontitis. J Endod. 2021; 47: 600-605. https://doi.org/10.1016/j.joen.2020.12.015

Downloads

Published

2024-11-16

Issue

Section

Artigos originais

How to Cite

Radiographic evaluation of the effects of a high-fat-diet on mandibular bone in animals. (2024). Nutrição Brasil, 23(4), 1097-1107. https://doi.org/10.62827/nb.v23i4.3034

Most read articles by the same author(s)