Benefícios da ventilação mecânica não invasiva associado ao exercício físico no tratamento de indivíduos com insuficiência cardíaca: uma revisão de literatura

Autores

DOI:

https://doi.org/10.62827/fb.v25i2.g722

Palavras-chave:

Insuficiência cardíaca; exercício físico; ventilação mecânica.

Resumo

Objetivo: Avaliar os efeitos da ventilação mecânica não invasiva associada ao exercício físico no tratamento de indivíduos com Insuficiência Cardíaca. Métodos: Realizou-se uma pesquisa bibliográfica em dezembro de 2023 nas bases de dados: PUBMED, BIREME e Cochrane Library, buscando estudos de janeiro de 2013 a dezembro de 2023, sem limitação de idioma. Resultados: Um total de 43 estudos foram encontrados, onde 7 artigos foram selecionados para esta revisão após leitura de título, resumo e texto na íntegra. Conclusão: A ventilação mecânica não invasiva associada ao exercício pode melhorar a tolerância ao exercício, o tempo limite e a saturação de O2, aliviar o uso da musculatura ventilatória, diminuir o tempo de internação, melhorar respostas autonômicas da frequência cardíaca, acelerar a cinética de recuperação do VO2 e melhorar a qualidade de vida de indivíduos com insuficiência cardíaca.

Biografia do Autor

  • Jessica Larissa Cavalcante Carneiro, UNAMA

    Fisioterapeuta, Graduada  pela Universidade da Amazônia (UNAMA), Pós Graduanda em Fisioterapia Respiratoria e Cardiovascular - UTI/Enfermaria pelo Centro Universitário do Estado do Pará  (CESUPA), PA, Brasil

  • Lenícia Pinheiro Loureiro Bitar, CESUPA

    Fisioterapeuta, Graduada pela Universidade da Amazônia (UNAMA), Pós-Graduanda em Fisioterapia Respiratoria e Cardiovascular UTI/Enfermaria pelo Centro Universitário do Estado do Pará  (CESUPA), PA, Brasil

  • Lorena Brito Cardoso, CESUPA

    Fisioterapeuta Graduada pelo Centro Universitário do Estado do Pará (CESUPA), Pós-Graduanda em Fisioterapia Respiratoria Cardiovascular - UTI/Enfermaria pelo Centro Universitário do Estado do Pará  (CESUPA), PA, Brasil

  • Raphael do Nascimento Pereira, CESUPA

    Fisioterapeuta, Doutor em Ciências do Movimento Humano (UNIMEP - SP), Professor Titular dos Cursos de Graduação em Medicina e Fisioterapia do Centro Universitário do Estado do Pará (CESUPA), PA, Brasil

Referências

Carvalho LA, et al. Efficacy of noninvasive ventilatory support on exercise tolerance increment in heart failure patients: a systematic review. Fisioter Pesqui. 2015;22:3-10

Barretto ACP, et al. Rehospitalizations and death due to heart failure: still alarming rates. Arq Bras Cardiol. 2008;91:335-341

Wen Z, Zhang T. Exercise resistance effect on adverse reaction rate in heart failure. Rev Bras Med Esporte. 2022;28:532-535

Medeiros NCB, et al. Effects of non-invasive ventilatory support in tolerance to effort of patients with hemodialysis. Fisioter Mov. 2017;30:151-158

Costa CS, Pires JF, Abdo SA. Cardiopulmonary rehabilitation protocol in patients undergoing cardiac surgeries at a hospital in Novo Hamburgo: a pilot study. Rev AMRIGS. 2016;60(1):9-14

Borges DL, et al. Influence of physiotherapeutic intervention on mechanical ventilation process of patients admitted to ICU during the night after uncomplicated cardiac surgery. Fisioter Pesqui. 2016;23:129-135

Mazullo Filho JBR, Bonfim VJG, Aquim EE. Noninvasive mechanical ventilation in the immediate postoperative period of cardiac surgery. Rev Bras Ter Intensiva. 2010;22:363-368

Lopes CR, et al. Benefits of non-invasive ventilation after extubation in the postoperative period of cardiac surgery. Braz J Cardiovasc Surg. 2008;23:344-350

Bittencourt HS, et al. Noninvasive ventilation in patients with heart failure: systematic review and meta-analysis. Arq Bras Cardiol. 2017;108:161-168

Page MJ, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372

Reis HV, et al. Impact of CPAP on physical exercise tolerance and sympathetic-vagal balance in patients with chronic heart failure. Braz J Phys Ther. 2014;18:218-227

da Luz Goulart C, et al. Non-invasive ventilation improves exercise tolerance and peripheral vascular function after high-intensity exercise in COPD-HF patients. Respir Med. 2020;173:106173

Borghi-Silva A, et al. Exercise-based rehabilitation delivery models in comorbid chronic pulmonary disease and chronic heart failure. Front Cardiovasc Med. 2021;8:729073

Oliveira MF, et al. Safety and efficacy of combined aerobic training with non-invasive ventilation in acute heart failure patients. Arq Bras Cardiol. 2018;110:467-475

Bittencourt HS, et al. Addition of non-invasive ventilatory support to combined aerobic and resistance training improves dyspnea and quality of life in heart failure patients: a randomized controlled trial. Clin Rehabil. 2017;31(11):1508-1515

Mazzuco A, et al. Noninvasive ventilation accelerates oxygen uptake recovery kinetics in patients with combined heart failure and chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev. 2020;40(6):414-420

Dempsey JA, et al. Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol. 2006;151(2-3):242-250

Kaneko Y, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348(13):1233-1241

Reis MS, et al. Acute effects of different levels of continuous positive airway pressure on cardiac autonomic modulation in chronic heart failure and chronic obstructive pulmonary disease. Arch Med Sci. 2010;6(5):719-727

Borghi-Silva A, et al. Aerobic exercise training improves autonomic nervous control in patients with COPD. Respir Med. 2009;103(10):1503-1510

De Souza Naves KA, Lopes CR, Dionisio VC. Effects of noninvasive ventilation on heart rate variability after coronary bypass grafting: comparison between ventilators. Intensive Care Med. 2015;41:946-947

Hearon CM Jr, Dinenno FA. Escape, lysis, and feedback: endothelial modulation of sympathetic vasoconstriction. Curr Opin Pharmacol. 2019;45:81-86

Gliemann L, Carter H. Sympatholysis: the more we learn, the less we know. J Physiol. 2018;596(6):963

Woods JA, et al. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial. J Am Geriatr Soc. 2009;57(12):2183-2191

Bolton CE, et al. British Thoracic Society guideline on pulmonary rehabilitation in adults: accredited by NICE. Thorax. 2013;68(Suppl 2)

McCarthy B, et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2015;(2)

Higashimoto Y, et al. Effect of pulmonary rehabilitation programs including lower limb endurance training on dyspnea in stable COPD: a systematic review and meta-analysis. Respir Investig. 2020;58(5):355-366

Jewiss D, Ostman C, Smart NA. The effect of resistance training on clinical outcomes in heart failure: a systematic review and meta-analysis. Int J Cardiol. 2016;221:674-681

Liao WH, et al. Impact of resistance training in subjects with COPD: a systematic review and meta-analysis. Respir Care. 2015;60(8):1130-1145

Borghi-Silva A, et al. Respiratory muscle unloading improves leg muscle oxygenation during exercise in patients with COPD. Thorax. 2008

Borghi-Silva A, et al. Effects of respiratory muscle unloading on leg muscle oxygenation and blood volume during high-intensity exercise in chronic heart failure. Am J Physiol Heart Circ Physiol. 2008;294(6)

Baffa GS, et al. Noninvasive ventilation can modulate heart rate variability during high-intensity exercise in COPD-CHF patients. Heart Lung. 2021;50(5):609-614

Morris PE, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36(8):2238-2243

Seymour JM, et al. Outpatient pulmonary rehabilitation following acute exacerbations of COPD. Thorax. 2010;65(5):423

Puhan MA, et al. Respiratory rehabilitation after acute exacerbation of COPD may reduce risk for readmission and mortality–a systematic review. Respir Res. 2005;6(1):1-12

Bittner V. Determining prognosis in congestive heart failure: role of the 6-minute walk test. Am Heart J. 1999;138(4):593-596

Naughton MT, et al. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation. 1995;91(6):1725-1731

Fleg JL. Salutary effects of high-intensity interval training in persons with elevated cardiovascular risk. F1000Res. 2016;5

Schaun GZ, Del Vecchio FB. High-intensity interval exercises' acute impact on heart rate variability: Comparison between whole-body and cycle ergometer protocols. J Strength Cond Res. 2018;32(1):223-229

Ho KM, Wong K. A comparison of continuous and bi-level positive airway pressure non-invasive ventilation in patients with acute cardiogenic pulmonary edema: a meta-analysis. Crit Care. 2006;10(2)

Borghi-Silva A, et al. Noninvasive ventilation acutely modifies heart rate variability in chronic obstructive pulmonary disease patients. Respir Med. 2008;102(8):1117-1123

Mazzuco A, et al. Effects of high- and moderate-intensity exercise on central hemodynamic and oxygen uptake recovery kinetics in CHF-COPD overlap. Braz J Med Biol Res. 2020;53

Downloads

Publicado

06/27/2024

Como Citar

Benefícios da ventilação mecânica não invasiva associado ao exercício físico no tratamento de indivíduos com insuficiência cardíaca: uma revisão de literatura. (2024). Fisioterapia Brasil, 25(2), 1386-1400. https://doi.org/10.62827/fb.v25i2.g722