Comparison of hemodynamic responses and perception of effort in upper and lower limb exercise: Protocol of a comparative intervention study
DOI:
https://doi.org/10.62827/fb.v26i5.1098Keywords:
Exercise Test; Hemodynamics; Physical Exertion.Abstract
Introduction: Resistance exercise prescription requires an understanding of the acute physiological effects associated with cardiovascular overload and perceived exertion. The literature suggests that lower-limb exercises can generate greater hemodynamic demands compared to upper-limb exercises, even when the relative load is equivalent. However, experimental data on this phenomenon in young adults with low levels of physical activity are scarce. Objective: To compare hemodynamic responses and perceived exertion between upper- and lower-limb resistance exercises performed at the same relative intensity. Methods: This is a comparative intervention study with a crossover design involving 38 healthy male volunteers between the ages of 18 and 30. Each participant will perform two resistance exercise protocols: Scott curls (upper limbs) and leg extensions (lower limbs), with three sets of 10 repetitions at 70% of 1RM. Heart rate, systolic and diastolic blood pressure, double product, and subjective exertion scales (Borg and OMNI) will be measured at rest, during, and after exercise. The order of interventions will be randomized. Statistical analysis will be performed using repeated-measures ANOVA with Bonferroni's post hoc test. Conclusion: The findings of this study may inform clinical and therapeutic decisions regarding the prescription and progression of resistance training, especially in populations with cardiovascular limitations or those new to exercise. Understanding the physiological differences between muscle groups may contribute to individualized rehabilitation and prevention strategies.
References
Barbosa RM, Dos Santos ACN, do Sacramento MS, Dos Santos CPC, Souza PES, Santana US, Petto J. Effect of isometric resistance exercise on blood pressure in normotensive adults: a systematic review of randomized clinical trials. Ann Transl Med [Internet]. 2025 Apr 30 [cited 2025 Oct 6];13(2):16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106110/ doi:10.21037/atm-24-124. PMID:40438518; PMCID:PMC12106110.
Fujie S, Hasegawa N, Sato K, Fujita S, Sanada K, Hamaoka T, Iemitsu M. Aerobic exercise training-induced changes in serum adropin level are associated with reduced arterial stiffness in middle-aged and older adults. Am J Physiol Heart Circ Physiol [Internet]. 2015 [cited 2025 Oct 6];309(10):H1642-7. Available from: https://journals.physiology.org/doi/full/10.1152/ajpheart.00338.2015 doi:10.1152/ajpheart.00338.2015.
Araújo JP, Silva ED, Silva JCG, Souza TSP, Lima EO, Guerra I, Sousa MSC. The acute effect of resistance exercise with blood flow restriction with hemodynamic variables on hypertensive subjects. J Hum Kinet [Internet]. 2014 [cited 2025 Oct 6];43:79-85. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234898/ doi:10.2478/hukin-2014-0092.
Ray CA, Carrasco DI. Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity. Am J Physiol Heart Circ Physiol [Internet]. 2000 [cited 2025 Oct 6];279(1):H245-9. Available from: https://journals.physiology.org/doi/full/10.1152/ajpheart.2000.279.1.H245.
Machado-Vidotti HG, Mendes RG, Simões RP, Castello-Simões V, Catai AM, Borghi-Silva A. Cardiac autonomic responses during upper versus lower limb resistance exercise in healthy elderly men. Braz J Phys Ther [Internet]. 2014 [cited 2025 Oct 6];18(1):9-18. Available from: https://www.scielo.br/j/rbfis/a/58957L98Yy578g37g8g7g8g/?lang=en doi:10.1590/S1413-35552012005000140.
Robertson RJ. Perceived exertion for practitioners: rating effort with the OMNI Picture System. Champaign (IL): Human Kinetics; 2004.
Wilke J, Vogel O, Vogt L. Validity and reliability of ratings of perceived exertion in resistance exercise: a systematic review. Sports Med Open [Internet]. 2022 [cited 2025 Oct 6];8:1-17. Available from: https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-022-00446-z doi:10.1186/s40798-022-00446-z.
Chan AW, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ [Internet]. 2013 [cited 2025 Oct 6];346:e7586. Available from: https://www.bmj.com/content/346/bmj.e7586 doi:10.1136/bmj.e7586.
Vanderlei LCM, Silva RA, Pastre CM, Azevedo FM, Godoy MF. Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res [Internet]. 2008 [cited 2025 Oct 6];41(10):854-9. Available from: https://www.scielo.br/j/bjmbr/a/j6X6jY5m6hY5m6hY5m6hY5m/?lang=en.
Grgic J, Lazinica B, Schoenfeld BJ, Pedisic Z. Test-retest reliability of the one-repetition maximum (1RM) strength assessment: a systematic review. Sports Med Open [Internet]. 2020 Jul 17 [cited 2025 Oct 6];6(1):31. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7367986/ doi:10.1186/s40798-020-00260-z. PMID:32681399; PMCID:PMC7367986.
Fisher JP, Young CN, Fadel PJ. Autonomic adjustments to exercise in humans. Compr Physiol [Internet]. 2015 [cited 2025 Oct 6];5(2):475-512. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270481/ doi:10.1002/cphy.c140005.
MacDonald JR, MacDougall JD, Hogben CD. The effects of exercising muscle mass on post-exercise hypotension. J Hum Hypertens [Internet]. 1999 [cited 2025 Oct 6];13(8):527-31. Available from: https://www.nature.com/articles/1000863 doi:10.1038/sj.jhh.1000863.
Tai YL, Marshall EM, Parks JC, Kingsley JD. Hemodynamic response and pulse wave analysis after upper- and lower-body resistance exercise with and without blood flow restriction. Eur J Sport Sci [Internet]. 2022 [cited 2025 Oct 6];22(12):1695-704. Available from: https://www.tandfonline.com/doi/full/10.1080/17461391.2021.1982018 doi:10.1080/17461391.2021.1982018.
Moreira OC, Faraci LL, de Matos DG, Mazini Filho ML, da Silva SF, Aidar FJ, et al. Cardiovascular responses to unilateral, bilateral and alternating limb resistance exercise performed using different body segments. J Strength Cond Res [Internet]. 2017 [cited 2025 Oct 6];31(3):644-52. Available from: https://journals.lww.com/nsca-jscr/Fulltext/2017/03000/Cardiovascular_Responses_to_Unilateral,_Bilateral.18.aspx doi:10.1519/JSC.0000000000001525.
Lagally KM, Robertson RJ, Gallagher KI, Gearhart R, Goss FL. Ratings of perceived exertion during low- and high-intensity resistance exercise by young adults. Percept Mot Skills [Internet]. 2002 [cited 2025 Oct 6];94(3 Pt 2):723-31. Available from: https://journals.sagepub.com/doi/10.2466/pms.2002.94.3c.723 doi:10.2466/pms.2002.94.3c.723.
Janse de Jonge XAK. Effects of the menstrual cycle on exercise performance. Sports Med [Internet]. 2003 [cited 2025 Oct 6];33(11):833-51. Available from: https://link.springer.com/article/10.2165/00007256-200333110-00004 doi:10.2165/00007256-200333110-00004.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Pedro Elias Santos Souza, Marvyn de Santana do Sacramento, Ramon Martins Barbosa, Laís dos Santos Marques, Alice Miranda De Oliveira, Hellen Carvalho Salviano, Jefferson Petto (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution 4.0 que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.